1. Cardinal d'un ensemble Définition 1. Soit $E$ un ensemble et $n$ un entier naturel. Si $E$ contient exactement $n$ éléments, on dit que $E$ est un ensemble fini et le cardinal de $E$ est égal à $n$ et on note: $$\text{Card}(E)=n$$ Un ensemble $E$ qui n'est pas fini est dit un ensemble infini. On pourrait écrire: $\text{Card}(E)=+\infty$. Remarque Dans ce chapitre, nous travaillons essentiellement sur des ensembles finis. 2. Probabilités conditionnelles 2. Étude d'un exemple Exercice résolu n°1. Probabilités conditionnelles. Formule des probabilités composées - Logamaths.fr. On considère l'univers $\Omega$ formé des trente élèves de la classe de Terminale. L'expérience aléatoire consiste à choisir un élève au hasard dans cette classe. On considère les deux événements suivants: $A$ = « l'élève choisi fait de l'allemand en LV1 »; $\overline{A}$ est l'événement contraire. $F$ = « l'élève choisi est une fille »; $\overline{F}$ est l'événement contraire. Chacun de ces deux caractères partage $\Omega$ en deux parties: $A$ et $\overline{A}$ ainsi que $F$ et $\overline{F}$.

  1. Ds probabilité conditionnelle sur
  2. Ds probabilité conditionnelles
  3. Ds probabilité conditionnelle 2

Ds Probabilité Conditionnelle Sur

Et la version PDF: Devoir probabilités et variables aléatoires maths première spécialité. Commentez pour toute remarque ou question sur le sujet du devoir sur les probabilités et variables aléatoires de première maths spécialité!

E le jouet doit passer par l'étape de rectification. 1/ Traduire la situation par un arbre pondéré. 2/ On choisit au hasard un jouet en sortie d'usine. Quelle est la probabilité que ce soit un jouet à pile passé par l'étape de rectification? 3/ On choisit maintenant un jouet parmi les jouets qui ne sont pas passés par l'étape de rectification. Quelle est la probabilité que ce soit un jouet à piles? Devoir sur probabilités et variables aléatoires Première Maths Spécialité - Le blog Parti'Prof. 4/ a) Montrer que la probabilité qu'un jouet soit passé par l'étape de rectification est 0, 022. b) Pour l'usine, la vente d'un jouet qui ne passe pas par l'étape de rectification rapporte 12€. En revanche, un jouet passé par l'étape de rectification lui coûte au final 0, 50€. On note X la variable aléatoire correspondant au gain algébrique de l'entreprise pour la production d'un jouet. Quelles sont les valeurs possibles prises par X? c) Établir la loi de probabilité de X. d) L'usine produit 80 jouets par jour en travaillant 298 jours par an. Quel est le gain moyen que peut espérer l'entreprise pour une année de production?

Ds Probabilité Conditionnelles

copyright "toute utilisation d'éléments de ce site est autorisée mais à des fins non commerciales"

Soit $X$ la variable aléatoire égale au nombre de places de cinéma gagnées par le client. Déterminer la loi de probabilité de $X$. Calculer l'espérance mathématique de $X$. Un autre client achète deux jours de suite une tablette de chocolat. Déterminer la probabilité qu'il ne gagne aucune place de cinéma. Déterminer la probabilité qu'il gagne au moins une place de cinéma. Montrer que la probabilité qu'il gagne exactement deux places de cinéma est égale à 0, 29. Exercice 12 Enoncé Problème de déconditionnement Un grossiste en appareils ménagers est approvisionné par trois marques, notées respectivement $M_1, M_2$ et $M_3$. La moitié des appareils de son stock provient de $M_1$, un huitième de $M_2$, et trois huitièmes de $M_3$. Ce grossiste sait que dans son stock, 13\% des appareils de la marque $M_1$ sont rouges, que 5\% des appareils de la marque $M_2$ sont rouges et que 10\% des appareils de la marque $M_3$ le sont aussi. Ds probabilité conditionnelles. On donnera les résultats sous forme de fractions. On choisit au hasard un appareil emballé dans le stock de ce grossiste: Quelle est la probabilité qu'il vienne de $M_3$?

Ds Probabilité Conditionnelle 2

Écrit par Luc Giraud le 23 juillet 2019. Publié dans Exercices TS Quelques exercices pour s'entraîner… I Exercice 6 Enoncé On considère un dé cubique dont les faces sont numérotées de 1 à 6. On jette successivement deux fois le dé et on note les numéros obtenus. On appelle $X$ la variable aléatoire égale au premier numéro obtenu. On appelle $Y$ la variable aléatoire qui prend la valeur 0 si " la somme des deux numéros est un nombre premier " et qui prend la valeur 1 sinon. On appelle $Z$ la variable aléatoire qui prend la valeur 0 si " la somme des deux numéros augmentée de 4 est un nombre premier " et qui prend la valeur 1 sinon. Les variables aléatoires $X$ et $Y$ sont-elles indépendantes? Ds probabilité conditionnelle 2. Les variables aléatoires $X$ et $Z$ sont-elles indépendantes? Exercice 7 Enoncé On tire au hasard deux cartes dans un jeu de 32 cartes. On appelle $X$ la variable aléatoire égale au nombre de coeurs obtenus et $Y$ la variable aléatoire qui prend la valeur 1 si les deux cartes tirées sont consécutives: "As et roi" ou "roi et dame" ou... ou "8 et 7" et qui prend la valeur 0 si les deux cartes ne sont pas consécutives.

Quelle est la probabilité qu'il soit rouge sachant qu'il vienne de $M_2$? Quelle est la probabilité que l'appareil choisi ne soit pas de couleur rouge? Après examen, on s'aperçoit que l'appareil choisi est rouge. Quelle est la probabilité qu'il soit de la marque $M_1$? Exercice 13 Enoncé Probabilités conditionnelles et suite arithmético-géométrique: Un fumeur essaye de réduire sa consommation. On admet qu'il fonctionne toujours suivant les conditions: $C_1$: S'il reste un jour sans fumer, alors il fume le lendemain avec une probabilité de 0, 4. $C_2$: Par contre, s'il cède et fume un jour, alors la probabilité qu'il fume le lendemain est de 0, 2. On note $F_n$ l'événement " l'individu fume le nième jour " et $p_n$ probabilité de l'événement $F_n$. Calculer $p_{n+1}$. On montrera que $p_{n+1}= -0. 2p_{n}+0. 4$ On considère la suite $(u_{n})$ définie par $u_{n}= p_{n}-\dfrac{1}{3}$. Montrer que est géométrique. En déduire $p_{n}$ en fonction de $n$. Ds probabilité conditionnelle sur. Déterminer la limite de $p_{n}$. Conclusion?