Soit: $p=2×1, 2-2, 4$. Soit: $p=2, 5$. Finalement, pour tout nombre réel $x$, on a: $g(x)=2, 5$. 4. Si $h(x)=-x+1$, alors: $h(x)=0$ $⇔$ $-x+1=0$ $⇔$ $-x=-1$ $⇔$ $x=1$. Exercice fonction affine seconde le. Or, graphiquement, il est clair que, si $h(x)=0$, alors $x$>1, 2. On aurait alors $x=1$ et $x$>1, 2, ce qui est absurde. Donc la formule $h(x)=-x+1$ ne convient pas. Par élimination, il ne reste plus que $h(x)=-{1}/{3}x+1$. Réduire...

Exercice Seconde Fonction Affine

Les fonctions affines Exercice 2 La droite $d_1$ est la représentation graphique de la fonction $f$. La droite $d_2$ est la représentation graphique de la fonction $g$. La droite $d_3$ est la représentation graphique de la fonction $h$. Attention! L'échelle de l'axe des ordonnées est inconnue. 1. Expliquer pourquoi ces 3 fonctions admettent chacune une expression du type $mx+p$. 2. a. On admet que, pour la fonction $f$, on a: soit $p=2$, soit $p=0$, soit $p=-2, 4$. Quelle est la valeur de $p$? Expliquer votre choix. 2. b. On admet que, pour la fonction $f$, on a: soit $m=2, 1$, soit $m=2$, soit $m=-2, 7$. Quelles est la valeur possible de $m$? Fonctions affines - Exercices 2nde - Kwyk. Expliquer votre choix. 3. On admet que $d_1$ et $d_2$ se coupent au point d'abscisse $2, 45$. Déterminer l'expression de $g(x)$. 4. On admet que, pour tout réel $x$, on a: soit $h(x)=-x+1$, soit: $h(x)=-{1}/{3}x+1$. Déterminer l'expression de $h(x)$. Solution... Corrigé 1. Les 3 fonctions proposées sont représentées par des droites. Ce sont donc des fonctions affines.

Exercice Fonction Affine Seconde Francais

Elles admettent donc chacune une expression du type $mx+p$. 2. $p$ est l'ordonnée à l'origine. Or, pour la droite $d_1$, il est clair que $p$ est strictement négatif. Donc la seule valeur convenable est $p=-2, 4$. 2. D'après ce qui précède, nous savons donc que $f(x)=mx-2, 4$. Comme $f$ est strictement croissante, on en déduit que le coefficient directeur $m$ est strictement positif. Donc, par élimination: ou bien $m=2, 1$, ou bien $m=2$. Pour choisir, utilisons le fait que $f(1, 2)=0$. Supposons que $m=2, 1$. On a alors: $f(x)=2, 1x-2, 4$. Et par là: $f(1, 2)=2, 1×1, 2-2, 4=0, 12$. Comme on ne trouve pas 0, la valeur de $m$ envisagée est exclue. Donc, par élimination, il ne reste plus que $m=2$. Pour se rassurer, nous pouvons vérifier que, si $m=2$, alors $f(1, 2)=0$. Dans ce cas, on a alors: $f(x)=2x-2, 4$. Et par là: $f(1, 2)=2×1, 2-2, 4=0$. C'est parfait! 3. On pose $g(x)=mx+p$. Comme $d_2$ est parallèle à l'axe des abscisses, on a: $m=0$. Fonctions affines et exercices concrets | Algèbre II | Khan Academy. Et par là, on obtient: $g(x)=p$. Or, comme $d_1$ et $d_2$ se coupent au point d'abscisse $2, 45$, on a donc: $g(2, 45)=f(2, 45)$.

Exercice Fonction Affine Seconde Du

Les fonctions affines sont les premières fonctions particulières étudiées au collège. Les notions déjà étudiées sont reprises dans la première partie. On introduit en classe de seconde l'étude des variations (notion vue dans le chapitre Variations d'une fonction:... ) des fonctions affines, ainsi que l'étude de leur signe. Pour déterminer graphiquement ou par le calcul le coefficient directeur et l'ordonnée à l'origine d'une fonction affine, on se reportera au chapitre équation de droite:... I. Notion de fonction affine. 1. Définitions. Définition n°1: On appelle fonction affine une fonction f f définie sur R \mathbb{R} par: f ( x) = a x + b f(x) = ax + b où a a et b b sont deux nombres réels donnés. Le réel a a est appelé coefficient directeur. Exercice seconde fonction affine. Le réel b b est appelé ordonnée à l'origine. Cas particuliers: Si b = 0 b = 0, alors f ( x) = a x f(x) = ax, on dit que la fonction f f est linéaire. Si a = 0 a = 0, alors f ( x) = b f(x) = b, on dit que la fonction f f est constante. Exemples: La fonction f f définie par: f ( x) = 2 x + 3 f(x) = 2x + 3 est une fonction affine ( a = 2 a = 2 et b = 3 b = 3).

La fonction g g définie par: g ( x) = − 4 x g(x) = -4x est une fonction linéaire, donc affine ( a = − 4 a = -4 et b = 0 b = 0). 2. Représentation graphique. La représentation graphique d'une fonction affine dans un repère est une droite. Il suffit donc de construire deux points pour la tracer. La représentation graphique d'une fonction linéaire passe par l'origine du repère. Devenez incollables sur les fonctions affines - Cours, exercices et vidéos maths. La représentation graphique d'une fonction constante est une droite parallèle à l'axe des abscisses. Représenter graphiquement les fonctions f f, g g et h h défines sur R \mathbb{R} par: f ( x) = x − 2 f(x) = x - 2 g ( x) = − 2 x + 1 g(x) = -2x + 1 h ( x) = 3 h(x) = 3 Pour la fonction f f: Point x x f ( x) f(x) A A 0 0 0 − 2 = − 2 0- 2 =-2 B B 3 3 3 − 2 = 1 3 - 2 = 1 Pour la fonction g g: g ( x) g(x) C C 0 1 D D 2 -3 II. Sens de variation Propriété n°1: Le sens de variation d'une fonction affine définie par: f ( x) = a x + b f(x) = ax + b dépend du signe de a a. On a: Si a > 0 a > 0, la fonction f f est croissante sur R \mathbb{R}.