$$ Justifier que l'on peut prolonger $f$ en une fonction continue sur $\mathbb R^2$. Étudier l'existence de dérivées partielles en $(0, 0)$ pour ce prolongement. Enoncé Pour les fonctions suivantes, démontrer qu'elles admettent une dérivée suivant tout vecteur en $(0, 0)$ sans pour autant y être continue. $\displaystyle f(x, y)=\left\{ \begin{array}{ll} y^2\ln |x|&\textrm{ si}x\neq 0\\ 0&\textrm{ sinon. } \end{array} \right. $ $\displaystyle g(x, y)=\left\{ \frac{x^2y}{x^4+y^2}&\textrm{ si}(x, y)\neq (0, 0)\\ Fonction de classe $C^1$ Enoncé Démontrer que les applications $f:\mtr^2\to\mtr$ suivantes sont de classe $C^1$ sur $\mathbb R^2$. $\displaystyle f(x, y)=\frac{x^2y^3}{x^2+y^2}\textrm{ si}(x, y)\neq (0, 0)\textrm{ et}f(0, 0)=0$; $\displaystyle f(x, y)=x^2y^2\ln(x^2+y^2)\textrm{ si}(x, y)\neq (0, 0)\textrm{ et}f(0, 0)=0$. Enoncé Les fonctions suivantes, définies sur $\mathbb R^2$, sont-elles de classe $C^1$? $\displaystyle f(x, y)=x\frac{x^2-y^2}{x^2+y^2}\textrm{ si}(x, y)\neq (0, 0)\textrm{ et}f(0, 0)=0$; $\displaystyle f(x, y)=\frac{x^3+y^3}{x^2+y^2}\textrm{ si}(x, y)\neq (0, 0)\textrm{ et}f(0, 0)=0$; $\displaystyle f(x, y)=e^{-\frac 1{x^2+y^2}}\textrm{ si}(x, y)\neq (0, 0)\textrm{ et}f(0, 0)=0$.

Derives Partielles Exercices Corrigés Simple

\end{array}\right. $$ $f$ est-elle continue en $(0, 0)$? $f$ admet-elle des dérivées partielles en $(0, 0)$? $f$ est-elle différentiable en $(0, 0)$? Enoncé Soit $f:\mtr^2\to\mtr$ définie par: $$\begin{array}{rcl} (x, y)&\mapsto&xy\frac{x^2-y^2}{x^2+y^2}\textrm{ si $(x, y)\neq (0, 0)$}\\ (0, 0)&\mapsto&0. \end{array}$$ $f$ est-elle continue sur $\mtr^2$? $f$ est-elle de classe $C^1$ sur $\mtr^2$? $f$ est-elle différentiable sur $\mtr^2$? Enoncé Démontrer que, pour tous $(x, y)$ réels, alors $|xy|\leq x^2-xy+y^2$. Soit $f$ la fonction de $\mtr^2$ dans $\mtr$ définie par $f(0, 0)=0$ et $f(x, y)=(x^py^q)/(x^2-xy+y^2)$ si $(x, y)\neq (0, 0)$, où $p$ et $q$ sont des entiers naturels non nuls. Pour quelles valeurs de $p$ et $q$ cette fonction est-elle continue? Montrer que si $p+q=2$, alors $f$ n'est pas différentiable. On suppose que $p+q=3$, et que $f$ est différentiable en $(0, 0)$. Justifier qu'alors il existe deux constantes $a$ et $b$ telles que $f(x, y)=ax+by+o(\|(x, y)\|)$. En étudiant les applications partielles $x\mapsto f(x, 0)$ et $y\mapsto f(0, y)$, justifier que $a=b=0$.

Derives Partielles Exercices Corrigés Et

Dérivées partielles, Dérivées suivant un vecteur Enoncé Justifier l'existence des dérivées partielles des fonctions suivantes, et les calculer. $f(x, y)=e^x\cos y. $ $f(x, y)=(x^2+y^2)\cos(xy). $ $f(x, y)=\sqrt{1+x^2y^2}. $ Enoncé Soit $f:\mathbb R^2\to \mathbb R$ une fonction de classe $C^1$. On définit $g:\mathbb R\to\mathbb R$ par $g(t)=f(2+2t, t^2)$. Démontrer que $g$ est $C^1$ et calculer $g'(t)$ en fonction des dérivées partielles de $f$. On définit $h:\mathbb R^2\to\mathbb R$ par $h(u, v)=f(uv, u^2+v^2)$. Démontrer que $h$ est $C^1$ et exprimer les dérivées partielles $\frac{\partial h}{\partial u}$ et $\frac{\partial h}{\partial v}$ en fonction des dérivées partielles $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$. Enoncé Soit $f$ une application de classe $C^1$ sur $\mtr^2$. Calculer les dérivées (éventuellement partielles) des fonctions suivantes: $g(x, y)=f(y, x)$. $g(x)=f(x, x)$. $g(x, y)=f(y, f(x, x))$. $g(x)=f(x, f(x, x))$. Enoncé On définit $f:\mathbb R^2\backslash\{(0, 0)\}\to\mathbb R$ par $$f(x, y)=\frac{x^2}{(x^2+y^2)^{3/4}}.

2. Caractéristiques du livre Suggestions personnalisées