Accueil Soutien maths - Variation de fonctions et extremums Cours maths seconde Fonctions croissantes; fonctions décroissantes. Tableau de variations. Maximum et minimum. Notations Dans ce module: ƒ désigne une fonction définie sur D (D désigne donc le domaine de définition de la fonction ƒ) I est un intervalle inclus dans D Fonction croissante Graphiquement, ƒ est croissante sur l'intervalle I signifie que sur I, la courbe représentative Cƒ monte. ƒ est croissante sur l'intervalle I signifie que pour tous nombres réels x 1 et x 2: Autrement dit: « une fonction croissante conserve l'ordre ». Illustration: ƒ est croissante et on voit bien que: pour a inférieur à b, f(a) est inférieur à f(b). Exemples La fonction carrée (ƒ(x) = x²) est croissante sur [0; + ∞ [ Une fonction affine ƒ(x) = a x + b est croissante si a > 0 La fonction cube (ƒ(x) = x3) est croissante sur ℜ Fonction décroissante Graphiquement, ƒ est décroissante sur l'intervalle I signifie que sur I la courbe représentative Cƒ descend.

Tableau De Variation De La Fonction Carré D

Les fonctions - Classe de seconde Des cours gratuits de mathématiques de niveau lycée pour apprendre réviser et approfondir Des exercices et sujets corrigés pour s'entrainer. Des liens pour découvrir Les fonctions - cours de seconde Etude qualitative de fonctions Qu'est-ce qu'un tableau de variation? Il résume les informations essentielles concernant les variations d'une fonction sur son ensemble de définition: il indique les intervalles sur lesquelles elle est croissante ou décroissante ainsi que l'image des nombres pour lesquels un extremum est atteint (valeur maximale ou minimale). Un tableau de variation comporte toujours deux lignes: - La première ligne indique les nombres clés de l'ensemble de définition, à savoir les bornes de ce derniers ainsi que les nombres qui délimitent les intervalles où la fonction est monotone (soit croissante, soit décroissante) - La deuxième ligne du tableau indique, pour chaque intervalle de l'ensemble de définition, les variations de la fonction. Une flèche descendante signifie que la fonction est décroissante tandis qu'une flèche montante indique qu'elle est croissante.

Tableau De Variation De La Fonction Carré Par

- Etape 2: pour chacune des zones déterminer l'intervalle des abscisses qui lui est associé (trouver la borne inférieure et la borne supérieure) puis les reporter dans la première ligne du tableau de variations. - Etape 3: Pour chaque intervalle de la première ligne du tableau de variations faire correspondre dans la deuxième une flèche montante lorsque la fonction est croissante et une flèche descendante lorsqu'elle est décroissante. - Etape 4: Utiliser la courbe pour trouver l'image par f de chaque nombre figurant dans la première ligne (cette image correspond à l'ordonnée du point ayant ce nombre pour abscisse) puis, sous chaque nombre, reporter dans la deuxième ligne l'image trouvée (soit l'origine d'une flèche, soit à sa pointe). Exemple: on souhaite réaliser un tableau de variations à partir de la courbe suivante Etape 1 Etape 2 Etape 3 Etape 4 Tracer la courbe d'une fonction à partir de son tableau de variation Etape 1: Utiliser le tableau de variation pour obtenir les coordonnées des points correspondant à chaque extremum (la première ligne indique les abscisses et la deuxième ligne fournit les ordonnées).

Tableau De Variation De La Fonction Carré Plongeant

Preuve Propriété 3 On appelle $f$ la fonction carré. On considère deux réels $u$ et $v$. On a alors $f(u)-f(v) =u^2-v^2 = (u-v)(u + v)$ Montrons tout d'abord que la fonction $f$ est décroissante sur $]-\infty;0]$. Si $u$ et $v$ sont deux réels tels que $u < v \pp 0$. Puisque $u0$. Donc $f(u)-f(v) > 0$ et $f(u) > f(v)$. La fonction $f$ est bien strictement décroissante sur $]-\infty;0]$. Montrons maintenant que la fonction $f$ est croissante sur $[0;+\infty[$. Si $u$ et $v$ sont deux réels tels que $0 \pp u < v$. Puisque $u$ et $v$ sont tous les deux positifs, $u+v >0$. Par conséquent $(u-v)(u+v) <0$. Donc $f(u)-f(v) < 0$ et $f(u) < f(v)$. La fonction $f$ est bien strictement croissante sur $]-\infty;0]$. On obtient ainsi le tableau de variations suivant: 2. La fonction inverse Pro priété 4: La fonction inverse $f$ est strictement décroissante sur $]-\infty;0[$ et sur $]0;+\infty[$.

Tableau De Variation De La Fonction Carré Seconde

Décroissante sur \left] -\infty; \dfrac{1}{3} \right] et croissante sur \left[ \dfrac{1}{3}; +\infty \right[ Croissante sur \left] -\infty; \dfrac{1}{3} \right] et décroissante sur \left[ \dfrac{1}{3}; +\infty \right[ Croissante sur \left] -\infty; 3 \right] et décroissante sur \left[ 3; +\infty \right[ Décroissante sur \left] -\infty; 3 \right] et croissante sur \left[ 3; +\infty \right[ Quelles sont les variations de la fonction f(x) = (5x-2)^2? Croissante sur \left[ \dfrac{2}{5}; +\infty \right[ et décroissante sur \left] -\infty; \dfrac{2}{5} \right] Croissante sur \left[ \dfrac{5}{2}; +\infty \right[ et décroissante sur \left] -\infty; \dfrac{5}{2} \right] Décroissante sur \left[ \dfrac{2}{5}; +\infty \right[ et croissante sur \left] -\infty; \dfrac{2}{5} \right] Décroissante sur \left[ \dfrac{5}{2}; +\infty \right[ et croissante sur \left] -\infty; \dfrac{5}{2} \right] Quelles sont les variations de la fonction f(x) = (-4x+3)^2? Décroissante sur \left[ \dfrac{3}{4}; +\infty \right[ et croissante sur \left] -\infty; \dfrac{3}{4} \right] Décroissante sur \left[ \dfrac{4}{3}; +\infty \right[ et croissante sur \left] -\infty; \dfrac{4}{3} \right] Croissante sur \left[ \dfrac{3}{4}; +\infty \right[ et décroissante sur \left] -\infty; \dfrac{3}{4} \right] Croissante sur \left[ \dfrac{4}{3}; +\infty \right[ et décroissante sur \left] -\infty; \dfrac{4}{3} \right]

Tableau De Variation De La Fonction Carré 2

C'est le cas par exemple de la fonction racine carrée.

Quelles sont les variations de la fonction f(x) = (3x+2)^2? Croissante sur \left[ -\dfrac{2}{3}; +\infty \right[ et décroissante sur \left] -\infty; -\dfrac{2}{3} \right] Croissante sur \left[ \dfrac{3}{2}; +\infty \right[ et décroissante sur \left] -\infty; \dfrac{3}{2} \right] Décroissante sur \left[ -\dfrac{2}{3}; +\infty \right[ et croissante sur \left] -\infty; -\dfrac{2}{3} \right] Décroissante sur \left[ \dfrac{3}{2}; +\infty \right[ et croissante sur \left] -\infty; \dfrac{3}{2} \right] Quelles sont les variations de la fonction f(x) = -(x+4)^2? Croissante sur \left] -\infty; −\dfrac{1}{4} \right[ et décroissante sur \left[ −\dfrac{1}{4}; +\infty \right[ Décroissante sur \left] -\infty; −\dfrac{1}{4} \right[ et croissante sur \left[ −\dfrac{1}{4}; +\infty \right[ Croissante sur \left] -\infty; −4 \right[ et décroissante sur \left[ −4; +\infty \right[ Décroissante sur \left] -\infty; −4 \right[ et croissante sur \left[ −4; +\infty \right[ Quelles sont les variations de la fonction f(x) = -(3x-1)^2?